Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

catena-Poly[[tetrapyridinecopper(II)]- $\mu_{2^{-}}$ naphthalene-1,5-disulfonato]

Shan Gao, ${ }^{a}$ Li-Hua Huo, ${ }^{\text {a }}$
Zhi-Bao Zhu ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\mathbf{b}}{ }^{\text {* }}$

${ }^{\text {a }}$ College of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
Disorder in main residue
R factor $=0.047$
$w R$ factor $=0.133$
Data-to-parameter ratio $=14.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

The disordered naphthalene-1,5-disulfonate unit in the title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{6} \mathrm{~S}_{2}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4}\right]_{n}$, connects adjacent $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4} \mathrm{Cu}$ units into a linear chain; the Cu atom shows octahedral coordination. Both units lie on special positions of $\overline{1}$ site symmetry.

Comment

In the crystal structure of the tetrapyridinecopper(II) complex that has the sulfate dianion as counter-ion, (I), the Cu atom exists in a square-pyramidal environment in which the basal plane is made up of the N atoms of the pyridine ligands; the $\mathrm{Cu}-\mathrm{O}$ distance $[2.105$ (4) \AA] is normal (Kožǐšek et al., 1989). Only a small number of tetrapyridinecopper(II) complexes of sulfonic acids have been structurally verified; these are the dicarboxybenzenesulfonate, whose Cu atom is involved in bonding to the sulfonate and carboxyl portions (Kulynych \& Shimizu, 2002), the trifluorosulfonate (Haynes et al., 1988) and the benzenesulfonate (Jedrzejas et al., 1993). The benzenesulfonate has a rather long $\mathrm{Cu}-\mathrm{O}$ bond $[2.471$ (8) \AA].

The naphthalene-1,5-disulfonate in (I) displays a much longer $\mathrm{Cu}-\mathrm{O}$ bond [2.602 (2) \AA]; the length can be ascribed to the difficulty of accommodating the rigid dianion on a center of inversion, a feature that is sometimes found in such symmetrical naphthalenedisulfonates (Cai, 2004). The N atoms of the pyridine ligand constitute a square around the Cu atom and the O atoms of the dianion are located above and below this plane to give rise to a distorted octahedral geometry for the metal atom. The bridging mode of the dianion gives rise to a chain motif (Fig. 1).

Experimental

Copper(II) dichloride dihydrate ($0.34 \mathrm{~g}, 2 \mathrm{mmol}$) was reacted with an excess of pyridine (1 ml) in methanol to give the deep-blue pyridine adduct. The adduct was then reacted with naphthalene-1,5-disulfonic

Received 26 January 2005
Accepted 28 January 2005
Online 5 February 2005
acid $(0.66 \mathrm{~g}, 2 \mathrm{mmol})$ in water. The pH was adjusted to 6 by the addition of drops of $0.2 M$ sodium hydroxide. Blue prismatic crystals were obtained after some days. Analysis calculated for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{CuO}_{6} \mathrm{~S}_{2}$: C 54.09, H 3.93, N 8.41%; found: C 54.12 , H 3.89; N 8.44\%.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{6} \mathrm{~S}_{2}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4}\right]$
$M_{r}=666.21$
Triclinic, $P \overline{1}$
$a=8.9105$ (7) \AA
$b=9.0601$ (7) \AA
$c=10.5488$ (8) \AA
$\alpha=66.158(1)^{\circ}$
$\beta=68.752(1)^{\circ}$
$\gamma=88.391(1)^{\circ}{ }^{\circ}$
$V=718.9(1) \AA^{3}$

$$
\begin{aligned}
& Z=1 \\
& D_{x}=1.539 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 6473
reflections
$\theta=2.3-28.3^{\circ}$
$\mu=0.96 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, dark blue
$0.35 \times 0.24 \times 0.19 \mathrm{~mm}$

Data collection

Rigaki R-AXIS RAPID IP diffractometer

ω scans

Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.531, T_{\text {max }}=0.839$
7482 measured reflections
3552 independent reflections

$$
2989 \text { reflections with } I>2 \sigma(I)
$$

$R_{\text {int }}=0.040$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-11 \rightarrow 11$
$k=-12 \rightarrow 12$
$l=-14 \rightarrow 14$

Refinement

Refinement on F^{2}

$$
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0757 P)^{2}\right.
$$

$+0.2705 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.72 \mathrm{e} \AA_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.91 \mathrm{e}^{\AA^{-3}}$
$w R\left(F^{2}\right)=0.133$
$S=1.07$
3552 reflections
239 parameters
H -atom parameters constrained

Figure 1
ORTEPII plot (Johnson, 1976) of a fragment of the polymeric chain in (I). Displacement ellipsoids are drawn at the 50% probability level. The Cu atom lies on a center of inversion at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$. Only one disorder component of the naphthalenedisulfonate is shown.
2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank the National Natural Science Foundation of China (No. 20101003), the Scientific Fund for Remarkable Teachers of Heilongjiang Province (No. 1054G036) and the University of Malaya for supporting this study.

References

Cai, J. (2004). Coord. Chem. Rev. 248, 1061-1083.
Haynes, J. S., Rettig, S. J., Sams, J. R., Trotter, J. \& Thompson, R. C. (1988). Inorg. Chem. 27, 1237-1341.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Jedrzejas, M. J., Towns, R. L. R., Baker, R. J., Duraj, S. A. \& Hepp, A. F. (1993). Acta Cryst. C49, 538-540.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kožíšek, J., Hricov, A. \& Langfelderová, H. (1989). Acta Cryst. C45, 885-887. Kulynych, A. D. \& Shimizu, G. (2002). CrystEngComm, 4, 102-105.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

