metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Shan Gao,^a Li-Hua Huo,^a Zhi-Bao Zhu^a and Seik Weng Ng^b*

^aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.005 \text{ Å}$ Disorder in main residue R factor = 0.047 wR factor = 0.133 Data-to-parameter ratio = 14.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[tetrapyridinecopper(II)]-μ₂naphthalene-1,5-disulfonato]

The disordered naphthalene-1,5-disulfonate unit in the title compound, $[Cu(C_{10}H_6O_6S_2)(C_5H_5N)_4]_n$, connects adjacent $(C_5H_5N)_4Cu$ units into a linear chain; the Cu atom shows octahedral coordination. Both units lie on special positions of $\overline{1}$ site symmetry.

Received 26 January 2005 Accepted 28 January 2005

Online 5 February 2005

Comment

In the crystal structure of the tetrapyridinecopper(II) complex that has the sulfate dianion as counter-ion, (I), the Cu atom exists in a square-pyramidal environment in which the basal plane is made up of the N atoms of the pyridine ligands; the Cu–O distance [2.105 (4) Å] is normal (Kožíšek *et al.*, 1989). Only a small number of tetrapyridinecopper(II) complexes of sulfonic acids have been structurally verified; these are the dicarboxybenzenesulfonate, whose Cu atom is involved in bonding to the sulfonate and carboxyl portions (Kulynych & Shimizu, 2002), the trifluorosulfonate (Haynes *et al.*, 1988) and the benzenesulfonate (Jedrzejas *et al.*, 1993). The benzenesulfonate has a rather long Cu–O bond [2.471 (8) Å].

The naphthalene-1,5-disulfonate in (I) displays a much longer Cu–O bond [2.602 (2) Å]; the length can be ascribed to the difficulty of accommodating the rigid dianion on a center of inversion, a feature that is sometimes found in such symmetrical naphthalenedisulfonates (Cai, 2004). The N atoms of the pyridine ligand constitute a square around the Cu atom and the O atoms of the dianion are located above and below this plane to give rise to a distorted octahedral geometry for the metal atom. The bridging mode of the dianion gives rise to a chain motif (Fig. 1).

Experimental

Copper(II) dichloride dihydrate (0.34 g, 2 mmol) was reacted with an excess of pyridine (1 ml) in methanol to give the deep-blue pyridine adduct. The adduct was then reacted with naphthalene-1,5-disulfonic

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved acid (0.66 g, 2 mmol) in water. The pH was adjusted to 6 by the addition of drops of 0.2 *M* sodium hydroxide. Blue prismatic crystals were obtained after some days. Analysis calculated for $C_{30}H_{26}N_4CuO_6S_2$: C 54.09, H 3.93, N 8.41%; found: C 54.12, H 3.89; N 8.44%.

Z = 1

 $D_x = 1.539 \text{ Mg m}^{-3}$

Cell parameters from 6473

Mo $K\alpha$ radiation

reflections

T = 295 (2) K

 $R_{\rm int} = 0.040$ $\theta_{\rm max} = 28.3^{\circ}$

 $h = -11 \rightarrow 11$

 $\begin{array}{l} k = -12 \rightarrow 12 \\ l = -14 \rightarrow 14 \end{array}$

Prism, dark blue

 $0.35 \times 0.24 \times 0.19 \text{ mm}$

3552 independent reflections

2989 reflections with $I > 2\sigma(I)$

 $\theta = 2.3 - 28.3^{\circ}$ $\mu = 0.96 \text{ mm}^{-1}$

Crystal data

 $\begin{bmatrix} Cu(C_{10}H_6O_6S_2)(C_5H_5N)_4 \end{bmatrix}$ $M_r = 666.21$ Triclinic, $P\overline{1}$ a = 8.9105 (7) Å b = 9.0601 (7) Å c = 10.5488 (8) Å $\alpha = 66.158 (1)^{\circ}$ $\beta = 68.752 (1)^{\circ}$ $\gamma = 88.391 (1)^{\circ}$ $V = 718.9 (1) \text{ Å}^{3}$

Data collection

Rigaki R-AXIS RAPID IP diffractometer ω scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{min} = 0.531, T_{max} = 0.839$ 7482 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0757P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.047$	+ 0.2705P]
$wR(F^2) = 0.133$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.07	$(\Delta/\sigma)_{\rm max} = 0.001$
3552 reflections	$\Delta \rho_{\rm max} = 0.72 \text{ e } \text{\AA}^{-3}$
239 parameters	$\Delta \rho_{\rm min} = -0.91 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Cu1-O1 Cu1-N1	2.602 (2) 2.015 (3)	Cu1-N2	2.039 (2)
$O1-Cu1-O1^{i}$ O1-Cu1-N1 $O1-Cu1-N1^{i}$ O1-Cu1-N2 $O1-Cu1-N2^{i}$	180 90.7 (1) 89.3 (1) 89.9 (1) 90.2 (1)	$\begin{array}{c} N1{-}Cu1{-}N1^{i} \\ N1{-}Cu1{-}N2 \\ N1{-}Cu1{-}N2^{i} \\ N2{-}Cu1{-}N2^{i} \end{array}$	180 90.0 (1) 90.0 (1) 180

Symmetry code: (i) 1 - x, 1 - y, 1 - z.

The napthalenedisulfonate unit is disordered over two sites on a center of inversion. For each component, the naphthalene fused ring was refined as a five-carbon species with a restrained C-C distance of 1.390 (5) Å; the 1,4-related distance was restrained to 2.780 (5) Å. The five atoms were restrained to being approximately coplanar within 0.01 Å. The $-SO_3$ portion is also disordered, but the two components share a common O atom; this atom is the atom that forms a bond to the Cu atom. The six S-O distances were restrained to within 0.005 Å of each other, as were the two S-C distances. Additionally, the six C···O distances, as well as the six O···O distances, were restrained to be equal. A somewhat tighter restraint was used to avoid a spread of the bond distances. The carbon-bound H atoms were placed at calculated positions [C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$] and were included in the refinement in the riding-model approximation.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC,

Figure 1

ORTEPII plot (Johnson, 1976) of a fragment of the polymeric chain in (I). Displacement ellipsoids are drawn at the 50% probability level. The Cu atom lies on a center of inversion at $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$. Only one disorder component of the naphthalenedisulfonate is shown.

2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

We thank the National Natural Science Foundation of China (No. 20101003), the Scientific Fund for Remarkable Teachers of Heilongjiang Province (No. 1054G036) and the University of Malaya for supporting this study.

References

- Cai, J. (2004). Coord. Chem. Rev. 248, 1061-1083.
- Haynes, J. S., Rettig, S. J., Sams, J. R., Trotter, J. & Thompson, R. C. (1988). *Inorg. Chem.* 27, 1237–1341.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Jedrzejas, M. J., Towns, R. L. R., Baker, R. J., Duraj, S. A. & Hepp, A. F. (1993). Acta Cryst. C49, 538–540.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Kožíšek, J., Hricov, A. & Langfelderová, H. (1989). Acta Cryst. C45, 885–887. Kulvnych, A. D. & Shimizu, G. (2002). CrystEngComm. 4, 102–105.

Rigaku (1998). *RAPID-AUTO*. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails

- Drive, The Woodlands, TX 77381-5209, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.